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EXECUTIVE SUMMARY

This report describes modifications made to the USARIEM model to
extend its applicability to high terrestrial altitude environments. Current
deployments of U.S. forces to high altitude regions in and around Afghanistan
provided the immediate impetus for this effort. Primary focus has been placed on
elevations ranging from 0 (sea level) and 4000 meters (13,123 ft). The approach
draws exclusively on previously published work, and is necessarily based on a
combination of rational and empirically derived relationships compatible with the
USARIEM model's computational structure. The modifying algorithms use
atmospheric pressure and are applied to the convective and evaporative heat
transfer components of the USARIEM model, specifically the thermal resistance
[l ] and maximum evaporative power of the environment [Emax ] algorithm
derivations. These two modifications are minimally invasive to the USARIEM
model computational engine and should be applicable to hyperbaric as well as
more drastic hypobaric environments.

The additional input parameter required for Heat Stress Monitor (HSM)
instantiations of the USARIEM model is the barometric pressure measured by a
new on-board sensor calibrated in atmospheres (1ATA= 760 Torr). For non-HSM
instantiations, barometric pressure is computed from terrain elevation:

Paim =(1-2.5577 « 10° « Z }>®% where Pam is pressure in atmospheres and
Z is terrain elevation in meters.

Representation of altitude effects on convective heat transfer is accomplished
by modifying the computation of total clo, Iy (Gonzalez, 1988), to include an
atmospheric pressure term that corrects for changes in air density. Measured or
computed Pam, in atmospheres, is inserted as a simple multiplier for Ve in the
expression to compute the altitude/pressure-sensitive total clo: i = lic * (Patm *
Ver )™ where Vegg is the effective air velocity in mes” and I, and | are the clo
and clo velocity coefficients respectively for the selected uniform

Representation of altitude effects on evaporative heat transfer is accomplished
by modifying the computation of maximum evaporative capacity, Enax , to include
an atmospheric pressure term. Measured or computed Py, in atmospheres, is
used to produce a correction factor for the Lewis Relation (LR= 2.2 °C/Torr)
embedded in the original Enax expression [Emax =LR ¢6.45 < Ap * Cevap * (Pssk -
P.r)]. The altitude/pressure-sensitive Emax is computed as: Emaxa = Pam 0 ¢
Emax (Nishi and Gagge, 1977).

The result is that dry thermal resistance increases with altitude, as does
Emax. Thus if all other variables are constant, dry heat loss decreases with
altitude but total skin evaporation would increase. Dry skin in cool environments
is a little better insulated (with added clothing) and protected from cold injury with
increasing altitude. In hot and or sweating conditions where generally dry heat
loss is small in comparison to evaporative heat loss, evaporative capacity
increases diminishing heat stress and or extends the person’s safe working time
for the environment and activity.



INTRODUCTION

OVERVIEW

The USARIEM Heat Strain model has been widely used to develop tailored
heat stress management guidelines for the prevention of heat injury in military
training and operational settings (FM 21-10, deployment manuals). Recently,
the USARIEM model has been implemented in a hand-held Heat Stress Monitor
(HSM) as well as the command and control oriented Operational Medicine
Environmental Grid Applications (OMEGA) test bed system (5, 6). The model's
principal output parameters are optimal work/rest schedules and maximum safe
work time limits based on predicted body temperature changes, and hourly
drinking water needed to replace predicted fluid losses from sweating. The
primary inputs are environment (air temperature, humidity, wind speed, and solar
load), clothing characteristics (insulation and vapor permeability), metabolic rate,
and acclimatization status.

STATEMENT OF THE PROBLEM

The USARIEM model is fundamentally an empirical, operational model
applied to temperature to heat stress climatic zones. It is based on the results of
many years of laboratory and field studies with human volunteers over a wide
range of hot environments, but at locations generally within a few hundred
meters of sea level. Consequently, the wet and dry heat transfer functions
represented in the model do not include consideration of the effects of high
terrestrial altitude on heat strain. The military response to global terrorist
activities will likely continue to involve deployments to geographic regions that lie
significantly above sea level and, because such deployments may present the
added heat injury risks associated with protective clothing encapsulation, there is
a need to extend the USARIEM model's applicability at altitude.

OBJECTIVES

The primary objective of this report is to document modifications to the
USARIEM heat strain model that are intended to extend its applicability to heat
stress conditions in high terrestrial altitude environments. A secondary objective
is to illustrate the results of those modifications on the model’s output in a context
relevant to conventional and chemical protective clothing scenarios. Scope is
limited to methods and tools, and does not include a rigorous sensitivity analysis
that will be the focus of a subsequent report.

APPROACH

The scientific basis for the modifications described here draws exclusively
on previously published work. The approach is further constrained to a
combination of rational and empirically derived mathematical relationships that
are compatible with the USARIEM model's existing computational structure. The
resulting modifications are focused on a practical representation of ambient



atmospheric pressure effects on the convective and evaporative heat transfer
functions in the model, specifically mathematical algorithms affecting the clothing
thermal insulative properties (It ) and maximum evaporative power of the
environment (Emax ). The required additional parameter for the model's
environmental input list is barometric pressure or altitude (hypobaric) effects
above sea level altering the above two factors.

METHODS
DEVELOPMENT PROCEDURES AND TOOLS

Spreadsheet Version

A preliminary evaluation of the behavior of the modifications to the I; and
Emax functions was accomplished using a spreadsheet instantiation of the
USARIEM model (Matthew et al., unpublished). This spreadsheet model version
provides minute-to-minute time series outputs of intermediate calculated
parameters and body core temperature as well as values for the modified |, and
Emax parameters during pre-defined work/rest activity scenarios. This allows a
graphical view of the impact of altitude predicted core temperature responses
across the relevant time domain.

C Language Version

Source Code: The C language instantiation of the USARIEM Heat Strain Model
is based on transformed source code origianlly derived primarily from the
MERCURY/OMEGA project's Heat Strain Decision Aid (HSDA) module
(Matthew, 2000). Three source code files are compiled and linked during the
build process: 1) erf.c that computes the error function, 2) heatcas.c that
estimates heat casualty risk using final core temperature and the computed error
function, and 3) hsdac.c that contains the algorithms comprising the main
computational engine.

Revisions: Recent modifications to the main computational engine corrected
original sweating rate computations and systematized handling of solar radiation
and estimating of the Wet Bulb-Globe Temperature (WBGT) index components
(Matthew et al., 2001). The current modifications to |y and Emax which enable
model sensitivity to altitude are implemented in the most recent version of
hsdac.c, hsdac8.c.

Running ariem_a: The single executable file resulting from a build of hsdac8.c,
erf.c, and heatcas.c is called ariem_a.exe. The executable reads an input file,
and automatically saves the results in an output file.

Input: The input file, ariem_a.in, shown in Figure 1, is an eighteen line ASCII
text file with the numeric input values on the left and the identifying variable, units



of measure, and comments on the left. The user edits the left hand column with
a text editor such as Notepad ®, then saves that file for each run.

Figure 1. Example of the ariem_a.in file.

25.56
90.0
1.00
25.56
4000.0
425.00
0.00
12.00
1.24
39.0
38.50
36.50
1.08
0.47
-0.27
0.41
176.0
70.0

1db (C)

'rh (%)

! wind speed (m/s)

! mean radiant temp (C)

! Terrestrial altitude (m)

! work rate (W)  [105, 150, 250, 425, 600]
! work external (W)

'acclimatization (days) [0 - 99]
! dehydration factor [0,1.24,2.5, 4.0, 6.0]
! max work temp (C) [39.0 historically]

! max work rest cycle temp (C) [38.5 historically]
!'skin temp (C) [fixed]

! clothing parameters: clo hw_bdu=1.08

liclo  hw_bdu=0.47

g hw_bdu=-0.27

ot hw_bdu=0.41

! soldier height (cm) [152 - 218)]

! soldier wieght (kg) [50 - 120]

Output Parameter Definitions: The output parameters are as follows:

MaxWk[min] = Maximum safe one-time continuous work exposure
(minutes)- assumes extended recovery time in cool environment

MxWrtr [qt/hr] = Hourly drinking water required to balance sweat losses
during one-time max work exposure

W/R [min] = Minutes of work per hour allowed (assuming balance of the
hour is spent at rest)

0 output means no sustainable work rest cycle is possible
60 output means work/rest cycles not needed

CyWtr [qt/hr] = Hourly drinking water required to balance sweat losses
during work/rest cycle

0 output means work/rest cycle not applicable —(either 0 or 60
minutes output in W/R [min] )




RstWtr [qt/hr] = Hourly drinking water required to balance sweat losses
while at rest

RstWtrSh [qt/hr] = Hourly drinking water required to balance sweat
losses while at rest in the shade

Patm = Computed local pressure in atmospheres (1ATA = 760Torr)
Heat Cas [%] = Heat casualty expectation if no action taken to implement
work/rest cycle or max work time limit

Tdew [°C] = Dew point temperature
Twba[°C] = Aspirated or psychrometric wet bulb temperature

Twbn[°C] = Estimated natural wet bulb as used in computation of the Wet
Bulb Globe Temperature (WBGT) index

Tg[°C] = Estimated Black Globe temperature as used in computation of
the Wet Bulb Globe Temperature (WBGT) index

WBGTI[°C] = 0.1 * Ta (from input) + 0.2 * Tg[°C] + 0.7*Twbn[°C]

MWkRec[min] = Estimated recovery time in minutes (in work
environment) from maximum safe one-time continuous work exposure, as
follows:
(1) 0 minutes output means no cooling possible: Recovery not
possible in that environment
(2)  >300 minutes means cooling rate too slow: Recovery not
possible in that environment

MWkRecS[min] = Estimated recovery time in minutes (in work
environment but in the shade) from maximum safe one-time continuous
work exposure, as follows:
(1) 0 output means no cooling possible: Recovery not possible
in that environment
(2)  >300 minutes means cooling rate too slow: Recovery not
possible in that environment

Output File: The output file, ariem_a.out, is a two line, tab delimited ASCII text
file shown in Figure 2. The first line contains the parameter identifier text and the
second line contains the output values.




Figure 2. Example of the ariem_a.out file.

MaxWk[min] MxWtr [qt/hr]  W/R [min]  CyWir [qt/hr] RstWtr [qt/hr] RstWtrSh [gt/hr] Heat Cas [%] .....
132 0.9 32 0.7 0.4 0.2 244

...... Tdew [C] Twba[C] Twbn[C] Tg[C] WBGT[C] MWkRec[min] MWkRecS[min] Patm

...... 23.8 242 251 466 29.5 33 22 0.57

Because the output file is overwritten each time the program is run, it is
necessary to save contents between runs. The horizontal format is intended to
facilitate a “cut and paste” operation into a standard spreadsheet file to
accumulate multiple model runs for analysis.

FUNCTION MODIFICATIONS

Terrestrial Altitude and Barometric Pressure

Altitude-related modifications to the model are based on barometric
pressure. Our modifications assume local barometric pressure is not known and
is approximated from known terrain elevation (1):

Patm =(1-2.5577 « 1075 « 7 )52 Atmospheres (Eq.1)
Where,

Pam = pressure, atmospheres

Z = terrain elevation, meters

This addition to the source code is implemented as a defined function, PATM, in
the header section of hsdac8.c. Terrestrial altitude in meters is read from the
input file and Pam is computed as described above. It should be noted that this
function is unnecessary in HSM and OMEGA applications because automated

measurements of barometric pressure would allow direct input of P, rather than
Z.

Convective Heat Transfer

Representation of altitude effects on convective heat transfer is
accomplished by modifying the computation of total clo, I, to include an
atmospheric pressure term that corrects for changes in air density (1,3,8).
Measured or computed P, in atmospheres, is inserted as a simple multiplier for
Vet in the expression to compute the altitude/pressure-sensitive total clo:




lia = lic ¢ (Pam * Vg )™ clo (Eq. 2)

Where

Paim = pressure, atmospheres

lka = air velocity and pressure adjusted clo for the selected uniform
Ve = effective air velocity, mes™

le =cloat1 mes™” for the selected uniform

lwe = air velocity modifier for clo for the selected uniform

Evaporative Heat Transfer

Representation of altitude effects on evaporative heat transfer is
accomplished by modifying the computation of maximum evaporative capacity,
Emax. Specifically, an atmospheric pressure term is added to adjust the value of
the Lewis Relation (LR) embedded in the original Enax expression (3,8).
Measured or computed Py, in atmospheres, is used to produce a correction
factor for LR as previously described (1), and the resulting altitude/pressure-
sensitive Enax is computed as:

Emaxa = Pam ¥« LR+ 6.45 *Ap * Ceyap * (Pssk - Pai) Watts ( Eq. 3)

where,

Emaxa = atmospheric pressure sensitive En.y, Watts
Pam = pressure, atmospheres

LR = Lewis Relation, 2.2 °C « Torr™

Ap = Dubois body surface area, m?

Cevap = water vapor permeability

Pssk = saturation vapor pressure at Tgin , TOrr

P.ir = ambient air vapor pressure, Torr

RESULTS

THE SPREADSHEET IMPLEMENTATION
Body Core Temperature Profiles

Figure 3 shows spreadsheet-predicted body core temperature profiles for heat

stress exposure at various terrestrial elevations wearing the battledress uniform
(BDU).
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Figure 3. Spreadsheet predicted T,. during Work/Rest cycles in BDU at 425
Watts.

Time series input scenario begins with a ten minute rest followed by five
consecutive cycles of 30 minutes of work (M= 425 Watts ) and 30 minutes of rest
(M= 105 Watts). Air temperature is 40 °C, RH is 20%, wind speed is 2 m/s, and
mean radiant temperature is 60 C

Figure 4 shows spreadsheet-predicted body core temperature profiles for heat
stress exposure at various terrestrial elevations while wearing the new joint
services light integrated suit technology (JSLIST) uniform over the hot weather
BDU. Time series input scenario again begins with a ten minute rest followed by
five consecutive cycles of 30 minutes of work (M= 405 Watts ) and 30 minutes of
rest (M= 105 Watts). Air temperature in this scene is 30 °C, RH is 40%, wind
speed is 2 m/s, and mean radiant temperature is 60 °C.
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Figure 4. Spreadsheet predicted T,. during Work/Rest cycles in JSLIST
over BDU at 425 Watts.

Modulated by time delay algorithms which change whenever there is a transition
to a different value for metabolic rate, the core temperature profile is
fundamentally driven by the model’s internally predicted final equilibrium rectal
temperature parameter, Tir. It represents the theoretical final steady state rectal
temperature for a static condition set. For the BDU scenario the sea level and
4000 meter Tre¢ values were 37.55 and 37.46 C respectively at 105 Watts and
39.07 and 38.82 C at 425 Watts. For the JSLIST scenario the sea level and
4000 meter T,o¢ values were 37.75 and 37.64 C respectively at 105 Watts and
40.40 and 39.92 °C at 425 Watts. The model output clearly suggests that the net
effect of the high terrestrial altitude is to improve heat transfer and mitigate heat
strain in both conventional (BDU) and protective encapsulation (JSLIST)
scenarios.




Water Requirements

As in the C language version of the ARIEM operational model, prediction of water
requirements in the spreadsheet version has no time dependency. It is based on
prediction of an average equilibrium sweat rate (Shapiro, 1982) that remains
constant for a particular environment, clothing type, and work load. Response
lag time algorithms have not been implemented and, consequently, transitions
are abrupt when viewed in time series format. Figure 5 shows the spreadsheet-
predicted hourly drinking water requirements for the working (M= 425 Watts) and
resting (M=105 Watts) conditions in BDU. Air temperature is 40 °C, RH is 20%,
wind speed is 2 m-s*, and mean radiant temperature is 60 °C.

Figure 5. Spreadsheet-predicted water requirements in BDU at 425 Watts
and at rest.
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Figure 6 shows the spreadsheet- predicted hourly drinking water requirements
for the working (M= 425 Watts) and resting (M=105 Watts) conditions in JSLIST
worn over BDU. Air temperature is 30 °C, RH is 40%, wind speed is 2 m/s, and
mean radiant temperature is 60 °C.




Figure 6. Spreadsheet-predicted water requirements in JSLIST over BDU at
425 Watts and at rest.
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Differences between the sea level and 4000 meter water requirements are quite
small for both the conventional (BDU) and protective encapsulation (JSLIST)
scenarios.

THE C LANGUAGE IMPLEMENTATION

Source Code

Source code listings for this updated C language version of the USARIEM
heat strain model are provided at Appendix A. The source code listing for
hsdac8.c contains several blocks of ‘dead code’ that have been retained to help
document revision history. While the core functionality of the code is adequate
for the simplest analytical tasks, it is clear that a rigorous, disciplined re-write of
the computational engine is in order. The addition of a graphical user interface
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(GUI) and input/output facilities to automate multiple ‘case’ runs would enhance
the overall usefulness of the model. Future modifications are planned to
implement this aspect of the model.

Output Products

The executable C language version of the USARIEM heat strain model
(ariem_a, compile date 11/30/2001) provides tabular output for a single input
situation or ‘case’. Output for each ‘case’ includes maximum safe work time,
optimal work/rest cycle limit, associated water requirements as well as a heat
casualty probability risk assessment, and a computed estimate of the ambient
wet bulb-globe temperature (WBGT) index. Table 1 depicts output results for a
clothing configuration consisting of the JSLIST uniform worn over the BDU. Each
line in the table used the ariem_a executable with a different input file and
contents of the resulting output file were ‘pasted’ into a summary spreadsheet
file. That process was repeated for each of the five terrestrial altitudes within
each of the three assumed metabolic rates

Table 1. The ariem_a model output sensitivity to high terrestrial altitude in
chemical protective posture at three different work rates.

JSLIST over BDU at Ta= 30 °C, RH=40%, Va=2 m/s, Tmr=60 "c

M=250 Watts
Altltude (m) Mka{mm] Mthr {qt/hr] W/R [mm] Cthr [qt/hr] Heat Cas [%]
0 300 08 60 .08 77
10‘00‘ 300 0.8 60 - ‘0‘8 1 6.4
2000 = 300 08 60 .08 52
3000 300 .08 60 08 42
4000 300 0.7 60 ;07 o 33
M=350 Watts ‘ ‘ \
Altitude (m) MxWk[min] MxWir [qthr] W/R [mm} Cthr [qt/hr} Heat Cas [%]
0 81 11 24 0.7 59.0
1000 85 14 .25 07 52.8
2000 91 11 27 07 464
3000 98 10 28 07 . 399
4000 108 ; 1.0 31 0.7 335
M=425 Watts ; ‘
Altitude (m) MxWk[min] MxWitr [qthr] W/R [min] CyWitr [qt/hr] Heat Cas [%]
0 58 13 19 0.7 9.1
1000 60 13 ; 19 0.7 939
2000 62 ‘ 13 20 0.7 90.6
3000 64 1.2 21 0.7 86.1
4000 68 1.2 .23 0.7 80.2

12



DISCUSSION

VERIFICATION AND VALIDATION

Verification issues for the USARIEM heat strain model are somewhat
complicated by its empirically-derived, population-based, development history. In
order to provide a margin of safety for those individuals whose response would
be greater than the statistical average response, the model was intentionally
‘tuned’ to over-predict the final equilibrium T.f by as much as two standard
deviations. The resulting optimal work/rest cycles and maximum safe work time
guidance are therefore very conservative. While this is a desirable and probably
necessary characteristic for a tactical decision aid application, it results in a
somewhat disconcerting level of error when averaged field or laboratory
response measurements are compared with model output. Previous work has
indicated that an adjustment to the denominator of the Ko« expression from 120
to 225 is sufficient to bring the time dependent outputs into line with averaged
response measurements (Gonzalez, 1997; Cadarette, 1999). The ability to
switch b etween the conservative and statistical average response formulations
for Kwok depending on application context (i.e. either operational or
research/validation) would extend the global utility of the model. Nevertheless, a
systematic revision of the model to accurately predict mean T response coupled
with a statistically valid stochastic representation of core temperature
probabilities in the high, or “risk tail” portion of the response distribution would
probably result in a more robust risk assessment paradigm. For the sake of
consistency with a large number of recent modeling analysis tasks, the current
instantiation employs the original, conservative 120 value in the Kyo« €xpression.

USER APPLICATIONS

The range of thermal strain applications for the USARIEM model is
considerably expanded with the addition of the algorithms to instantiate
sensitivity to high terrestrial altitude following basic heat transfer principles
outlined by previous work (Nishi and Gagge, 1977; Gonzalez, 1988). While
these algorithms do not consider non-thermal health risks associated with living
or working at high terrestrial altitudes, they do extend the heat strain model
working domain to terrestrial elevations that are consistent with emerging geo-
political deployment scenarios. The additional improvements and additions to
the current ARIEM heat stress model is ideally applicable to various Objective
Force Warrior requirements and Land Warrior clothing systems planned for the
future. The implementation of the model in C language options is also a marked
improvement from the previous versions.
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CONCLUSIONS

The simple ASCII text input/output file interface to the ariem_a model severely
limits its utility for anything more than the simplest analytical tasks. There is a
need to design and implement a Graphical User Interface (GUI) and extensions
that allow a batch mode capability that will automate preparation of a single,
larger input file consisting of user-specified multiple domain ranges and step
intervals
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APPENDIX A

heatcas.c

double erf (double XX);

float heatcas (float Tmxcore)

/***********************************************************************

* Kk k ok ok

computes heat strain casualty

R i B D I kI Ik T R i dE I I b e P 3
****/

static float Tmean = 39.5F, sigma = 0.5198F, sqgrt2 = 1.4142135F;

float heat cas, arg;

arg = (Tmxcore - Tmean) / (sgrt2 * sigma);
heat cas = (float)erf(arg) / 2.0F + 0.5F;
heat_cas *= 100.0F; /* o= % x/

return( heat cas );

Erf.c

#include <math.h>

double erf (double XX)
/**********************************************************************
C Computes the value of the error function at the point XX
Ref: C. Hastings, Approximations for Digital Computers,
Princeton Univ. Press, Princeton, NJ, 1955
Referenced by: DSDIST, XYPVPR
External References: None

**********************************************************************/

{

double ERFCTN, SIGN, X, X2, X3, X4, X5, X6, Y;

static double Al1=0.0705230784, A2=0.0422820123, A3=0.0092705272,
A4=0.0001520143, A5=0.0002765672, A6=0.0000430638,
PI=3.14159265, XMIN=1.E-5, XMAX=5.;

X=XX;
if (X == 0.)
return{0.0) ;

SIGN = X / fabs(X);
X = fabs (X);

1f (X < XMIN)
ERFCTN = 2. * X / sqrt (PI) ;
else if (X > XMAX)



ERFCTN=1.0;

else {
X2=X*X;
X3=X2*X;
X4=X3*X;
X5=X4*X;
X6=X5*X;

Y=1.+A1%X;
Y=Y+A2¥%X2;
Y=Y+A3*%X3;
Y=Y+A4*X4 ;
Y=Y+A5%X5 ;
Y=Y+A6*X6 ;

Y
Y

It

pow(Y, 16.0);
1./ Y;

]

ERFCTN = 1. - Y;

}

X = SIGN * X;
ERFCTN = SIGN * ERFCTN;

return( ERFCTN ) ;

hsdac_8.c

/*****‘k****************'k**********************************‘k************

program: ariem a; This file is HSDACS8.C :Computational Engine Heat
Strain Decision Aid C, version: 8
created: October 2001

History,USARIEM model source code:

BASIC Language engine- L.A. Stroschein, USARIEM:

C Language PC version of firmware implementation for Heat Stress Monitor
(HSM) - K. Honeyager, Under Contract, SwRI

C Language functional extensions for MERCURY/OMEGA - J.R. Furlong, Under
Contract, SAIC

C Language engine modifications for high terrestrial altitude - W.
Matthew & L. Berglund, USARIEM

REFERENCES
1) Pandolf, K.B., L.A. Strochein, L.L. Drolet, R.R. Gonzalez, M.N.

Sawka, "Predictive Modeling of Physiological Responses and Human
Performance in the Heat," Comp. Biol. & Med., 6:319-329, 1986.

*****************‘k‘k*************************‘k‘k‘k*******‘k****************/

#include <stdio.h>
#include <string.h>
#include <math.h>

#define data
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#idefine code
#define xdat
#define idat

#define fin
#define fout
#define LBUF
#define DURO
0.425))

#define

#define LEWI

#define SUCC
#fdefine FAIL
#tdefine STEF

float

float

float

float

heatca
tmtry;
Ereqgs;

Emaxs;

a
a

"ARIEM a.in"

"ARTEM a.out”

128
IS(ht,wt) 0.007184F *

PATM (alt m) (float)pow( (1

S_COR(patm) (float) (pow(patm,

ESS 1
URE O
AN_BOLTZMANN 5.67e-8

s (float Tmxcore) ;

typedef struct inputs {

float
float
float
float

float
float
float
float
float
float
float
float

Ta;
rh;
wSs;
mrt;

alt m;
workrate;
workextn;
acclim;
dehyd;

Tmxwork, Tmxcyc, Tmxmetrate,

clo, iclo, gc, gi;
ht, wt;

} INPUTS;

INPUTS hsm in;
FILE *stream;
char buffer [LBUF+1];

typedef struct algo variables

float
float
float
float
float
float

float
float

TrefWK;
TrefRY;
TrefAWK;
TrefARY;
WtrWK;
WtrRY;

WELrRYSh;
Cp;

(float) (pow (ht,

18

-0.45))

Tskin;

0.725)

* pow (wt,

.0 -0.000025577 * alt m),5.2559)



float CPSh;
float TDWK;
float TreoCWK;
float KWK;
float DTreWK;
float TDRY;
float KRY;
float DTreRY;
float TmCWK;
float TmCRY;

float TreoCRY;
float Tskin;
} HSMALGO STRUCT;

/*
* Punction prototypes for Heat Stress Monitor functions.
*
/

void CalcBaseValues (HSMALGO STRUCT *);

void DoTheRest (HSMALGO“STRUCT *)

void ComputeAspiratedWetBulb (float *);

void GetSkinTemp (HSMALGO STRUCT *);

void ComputeDewPoint () ;

int ComputeNaturalWetBulb () ;

int HSPrediction (void) ;

int ComputeGlobe (void);

float SVP (float T);

float veff (float);

float It (float,float);

float Cevap (float);

float U (float);

float Hrc (float, HSMALGO STRUCT *, float Asold);

float Ereq (float, float, float, float);

float Emax (float patm, float, float, HSMALGO STRUCT *, float Asold);

float Tref (float, float, float, float, float, float);
float DTref (float, flocat);

float WTR (float, float, float Asold);

float MxWK (float, float, float, float, float);

float MxWRKRY (float, float, float,float);

float TreRY (float t, float TreoCRY, float DTreRY, float KRY, float
TDRY) ;
float TreWK (float t, float TreoCWK, float DTreWK, float KWK, float
TDWK) ;
float round (float, unsigned char);
float f wetbulb(float hconv, float hevap, float Ta, float Trk4, float
Pdp,

float Twb) ;

/*
* Structure definitions.
*/
typedef struct clothing struct {
char “*text;
float itc;
float itve;
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float imc;
float imve;
clothing table;
g_

typedef struct clothing types
char *text;
clothing_table *clo Ist;
} clothing;

/*typedef struct work struct {
char *text;
float metabolic rate;

} work table;*/

struct select {
unsigned char clothing type idx;
unsigned char clothing idx;
/*unsigned char work rate idx;*/

}i

struct hsm data
float globe;
float wbgt;
float wet bulb;
float awet bulb;

float dry bulb;
float wind speed;
float relhum;
float mrt;

float alt _m;
float dewpoint;

float Lcor;

Vi

/*
* Define the MISCELLANEOUS clothing option list.
*/
clothing table code misc list[1] = {
"MERCURY INPUT ", -99.0, -99.0, -99.0, -99.0,

Vi

clothing code clothing list[1] = {

"MISCELLANEOUS ", misc_list,
bi

/*work_table code work list[] = {
"LEVEL 1 ", 105.0,
"LEVEL 2 ", 150.0,
"LEVEL 3 ", 250.0,
"LEVEL 4 ", 425.0,
"LEVEL 5 ", 600.0,
NULL, 0.0%x/
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/*
* Structure containing menu selections used in the calculation of
* work/rest and water requirements.
*/

xdata struct select input selections;

struct hsm data measurements;

/* global variables */
xdata float MRT;

xdata float patm;

/* Heat stress prediction results */
xdata int work rest;

xdata float water req;

xdata int max work;

xdata float max water;

xdata float rest water;
xdata float rest water sh;
xdata float maxwk rcy;

xdata float maxwk rcy sh;
xdata float heat cas;

main (int argc, char **argv)

{

/*int argi; */

/*unsigned char stringl80]; */
clothing table *cl table;

/* read ariem_a.in */
stream = fopen(fin, "r");
if (stream == NULL) /{
strcpy (buffer, fin);
printf ("Can not open %s\n", buffer);
exit (1) ;

}

fgets (buffer, LBUF, stream);

sscanf (buffer, "$f", &hsm in.Ta);
fgets (buffer, LBUF, stream);
sscanf (buffer, "%f", &hsm in.rh);
fgets (buffer, LBUF, stream);
sscanf (buffer, "%f", &hsm_in.ws);

fgets (buffer, LBUF, streamnm);
sscanf (buffer, "%f", &hsm _in.mrt) ;

fgets (buffer, LBUF, stream);



sscanf (buffer, "%f£", &hsm in.alt m);

fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.workrate) ;
fgets (buffer, LBUF, stream);

sscanf (buffer, "$f", &hsm in.workextn);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.acclim);

fgets (buffer, LBUF, stream);
sscanf (buffer, "%f", &hsm in.dehyd);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.Tmxwork) ;
fgets (buffer, LBUF, stream);

sscanf (buffer, "$f", &hsm_in.Tmxcyc) ;
fgets (buffer, LBUF, stream);

sscanf (buffer, "$f", &hsm in.Tmxmetrate);
fgets(buffer, LBUF, stream);

sscanf (buffer, "$f", &hsm _in.Tskin);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.clo);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.iclo);
fgets (buffer, LBUF, stream) ;

sscanf (buffer, "%f£", &hsm in.gc);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f", &hsm in.gi);
fgets (buffer, LBUF, stream);

sscanf (buffer, "%f£", &hsm in.ht);
fgets (buffer, LBUF, stream) ;

sscanf (buffer, "$f£", &hsm in.wt);

fclose (stream) ;

measurements.globe = 42.8896F;
measurements.dry bulb = hsm in.Ta;
measurements.relhum = hsm in.rh;

measurements.wind speed = hsm in.ws;
measurements.mrt = hsm in.mrt; /* [cl */
MRT = hsm_in.mrt; /* global MRT */

patm = PATM(hsm in.alt m);
measurements.Lcor = LEWIS COR(patm) ;

/* I've arbitrarily chosen to use the miscellanceous category
to store clothing input - jrf */
/* All lists but miscellaneous deleted for v0.61 */
input_selections.clothing type idx = 0; /* miscellaneous list */
input_selections.clothing idx = 0; /* MERCURY INPUT */

/* select the table */
cl table =
clothing list[input selections.clothing type idx].clo 1lst;

/* load the table w/ clothing coefficients */
cl_tablelinput selections.clothing idx].itc = hsm_in.clo;
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/* clothing velocity coefficient */
cl_tablelinput_selections.clothing idx].itvc = hsm in.gc;

/* clothing permeability coefficient */
cl_tablelinput selections.clothing idx].imc = hsm in.iclo;

/* clothing permeability velocity coefficient */
cl_tablelinput_selections.clothing idx].imvc = hsm in.gi;

/* set the work rate index
if (hsm in.workrate < 150.0F) resting
input_selections.work rate idx = 0
else if (hsm in.workrate < 250.0F) v. light
input_selections.work rate idx = 1
else if (hsm_in.workrate < 425.0F) light
input_selections.work rate idx 2

)

3

else if (hsm in.workrate < 600.0F

moderate
input_selections.work rate idx = 3;
else
input_selections.work rate idx = 4; heavy */
if (HSPrediction() == FAILURE) /* indicate FAILURE to MERCURY */
max_work = -999;

/* write hsdac.out */
stream = fopen (fout, "w");
if (stream == NULL) /{
strcepy (buffer, fout);
printf ("Can not open %s\n", buffer);
exit (1) ;

}
/*

fprintf (stream, "%4d\t\t! Max safe work time [min]\n", max work) ;
fprintf (stream, "%4d\t\t! Work-rest cycle [min]\n", work rest);
fprintf (stream, "%5.2f\t\t! Water rations [canteens]\n", max water);
fprintf (stream, "%5.1f\t\t! Heat strain casualty [%%]\n", heat cas);
fprintf (stream, "$5.2f\t\t! Dewpoint [C]\n", measurements.dewpoint) ;
fprintf (stream, "%5.2f\t\t! Asp wet bulb [C]\n",measurements.awet bulb);
fprintf (stream, "%5.2f\t\t! Nat wet bulb [C]l\n", measurements.wet_bulb);
fprintf (stream, "%$5.2f\t\t! Globe [C]\n", measurements.globe) ;
fprintf (stream, "%5.2f\t\t! WBGET index [C]\n", measurements.wbgt);
*
/
fprintf (stream, "MxWk[min]\t MxWtr [gt/hr]l\t W/R [min]\t CyWtr
[at/hrl\t RstWtr [gt/hrl\t RstWtrSh I[gt/hrl\tHeat Cas [%$%]\t Tdew
(CI\t Twba[Cl\t Twbn[Cl\t Tg[Cl\t WBGTI[C]\t MWkRec [min]\t
MWkRecS [min] \t patm\n") ;
fprintf (stream, "%$4d\t%5.1£\t%4d\t%5 . 1E\t%5.1F\t%5. 1E\t%5.1F\t%¥5.1F\
£%5.1E\t%5.1F\ £%5.1E\t%5.1£\t%5. 0 \t%5.0£\t%5.2£\n", max_ work,
max_water, work rest, water req, rest water, rest water_ sh,
heat cas, measurements. dewpoint, measurements.awet bulb,
measurements.wet bulb, measurements. globe, measurements.wbgt,
maxwk_rcy, maxwk rcy sh, patm);

fclose (stream) ;
exit (0) ;
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}

f#idefine min(x,y) ((x < vy) ? x : y) /* Return the minimum of 2 values */

#define max(x,y) ({(x > y) ? x : y) /* Return the maximum of 2 valueg */
static float xdata Rload; /* Solar factor */
static float xdata TmMWK 41; /* Max work for light casualties */

/***************"k**k*'k‘k******‘k**********k-k‘k*‘k*k*'k*****‘k********************

* kK kK

* Punction Name:

* HsPrediction

*

* Description:

* This is the main HS prediction routine. It initializes required
* variables and calls the routines which calculate work/rest and
* water requirements.

*

* Inputs:

* none

*

* Outputs: SUCCESS, if successful

* FAILURE, if not

*

Ahkhkdhkhdhkh bk r bk hkh Ak Ak Ak bk hk kA A AT AR AR I AR A A AR A I AR A r Ak hkdhhkhkdhkhkdhhhhxhxkr*k

****/

int HSPrediction ()
{
HSMALGO_STRUCT xdata hsm;
ComputeAspiratedWetBulb (&measurements.awet bulb) ;

ComputeDewPoint () ;

if (ComputeNaturalWetBulb() == FAILURE)
return{ FAILURE ) ;

if (ComputeGlobe () == FAILURE)
return( FAILURE ) ;

GetSkinTemp (&hsm) ;
CalcBaseValues (&hsm) ;
DoTheRest (&hsm) ;
return( SUCCESS ) ;

} /* end of HSPrediction routine */

/***********************************************************************

* Kk kK

* Function Name:
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L R T

DoTheRest

Description:

Inputs:

none

Outputs:

none

KhhhdhXdhhhhhhkhhhhhkhkhhhhhhrhdhkhrhhhhhhhhhbhhohhdxhhrhdrhkhrhhhdrbhkhrhhhhkkxdrk

****/

void DoTheRest (HSMALGO_ STRUCT *hsm)

{

float
float
float
float
float
float

input

*/

idata temporary;
idata TmCWKold;
idata TmCWKnew;
idata TmMWKest;
idata TLest;
MWTL, MCTL;

/* localize the MAX WORK TEMP LIMIT and MAX CYCLIC TEMP_LIMIT
*/

/* these were hardwired at 39.0 and 38.5 C resp. in orginal hsm pc

il

MWTL hsm in.Tmxwork;
MCTL = hsm_in.Tmxcyc;

/***************************************************************

hhkhhhhhhhkhhhkddhhdhdirihi CEW hhkhkkhkdhhhhkhkkxhkhhkhdxhxx

***************************************************************/

/*

* Coefficients for Time Series Equations.

*/

120. ;

/* time delay period for work period. */
hsm->TDWK = 3480. / hsm in.workrate;

/*****‘k********‘k**************************‘k*k*‘k'k*k*

* only for initializing the first work period!
*******‘k******‘k‘k*‘k‘k'k**k‘k*************************/
hsm->TreoCWK = 37. + (hsm->TrefRY + hsm->TrefARY - 37.) *
(pow (0.1, pow (0.4, ((hsm->TDWK-30.)/60.))));

/* time constant for the work periocd. */
/* v0.6 change: 120 -> 225: change back to 120, May 2001-wtm ) */
hsm->KWK = (1. + 3. * exp (0.3 * (hsm->TreoCWK - hsm->TrefWK))) /

/* rectal temperature difference for work period. */
hsm->DTreWK = hsm->TrefWK + hsm->TrefAWK - hsm->TreoCWK;

/************'k‘k*k********k‘k‘k‘k‘k'k*‘k*********************************

hhkhdhkhkhhkkhdhdddhihhrx CER Fhrkhdhdhkhhkddhdxddhhrd

*****‘k*****‘k******‘k*‘k******************************************/
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/* compute time delay period for recovery period */
if (hsm->CP < 0.)
hsm->TDRY = 15.;

else
hsm->TDRY

it

15. * exp (-0.5 * hsm->CP);

/* time constant for recovery period */
hsm->KRY = (1. - exp (-1.5 * fabs (hsm->CP)))/40.;

/*‘k**********‘k*’k*****************9:*k**~k~k****************‘k***‘k‘k*‘k
hkhkkhdhhhkhkhhdhkhrhhhhkkhhk MWK khhkkhkhkhkhkkhdhhkhkdhhdtxkx

'k**k************************************‘k‘k‘k******‘k***‘k**********/

TmMWK 41 = MxWK (MWTL, hsm->DTreWK, hsm->TreoCWK, hsm->TDWK,
hsm->KWK) ;

/**‘k‘k*********‘k**‘k**************'k~k********‘k*‘k‘k‘k*****************
hhhkhhhhkhkhkhhkrhhhkkkhkkx (604 IR R I R S IR I i S A

**‘k**********‘k‘k’k*************************************‘k********‘k/

/*
* Compute the work/rest cycle.
*/
hsm->TmCWK 0
hsm->TmCRY = 0.0;
if (hsm->CP > 0.)
TmCWKold = 0.;
TmCWKnew 0.;
if (MCTL > hsm->TrefWK + hsm->TrefAWK)
/* Initial rectal temp. for current recovery period */
hsm->TreoCRY = hsm->TrefWK + hsm->TrefiAWK;

]

.0;
.0

H

else
hsm->TreoCRY = MCTL;

/* rectal temperature difference for recovery period */
hsm~>DTreRY = hsm->TrefRY + hsm->TrefARY - hsm->TreoCRY;

do {
/* temporary = RECOVERY TIME in MERCURY ADA - jrf */
temporary = hsm->TDRY + hsm->TDWK + 60. - 0.5 *
(TmCWKold + TmCWKnew) ;

if (hsm->TDRY + 5. < temporary)
tmtry = temporary; /* t! THIS IS TIME - jrf %/
else
/* initial rectal twmp for current work period */
tmtry = hsm->TDRY + 5.; /* ITHIS IS TIME- jrf */

/* NOTE: hsm->TreoCWK has units of time on the RHS and
temp on the LHS - jrf */

hsm->TreoCWK = TreRY (tmtry, hsm->TreoCRY,

hsm->DTreRY, hsm->KRY, hsm->TDRY) ;

hsm->DTreWK = hsm->TrefWK + hsm->TrefAWK - hsm-
>TreoCWK;

26



TmMWKest = MxWK (MCTL, hsm->DTreWK, hsm->TreoCWK, hsm-
>TDWK, hsm->KWK) ;

TLest = TreWK( (TmMWKest + hsm->TDRY), hsm->TreoCWK,
hsm->DTreWK, hsm->KWK, hsm->TDWK) ;

TmCWKo1ld TmCWKnew;
TmCWKnew = MxWK ((MCTL - 0.5 * (TLest - MCTL)),
hsm->DTreWK, hsm->TreoCWK,
hsm->TDWK, hsm->KWK) ;

I

} while ( fabs (TmCWKold-TmCWKnew) >= 1.0 );

/*( round (TmCWKold, 0) != round (TmCWKnew, 0))*/
hsm->TmCWK = round (TmCWKold, 0);
if (10. > 60. - hsm->TmCWK)

hsm->TmCRY = round (hsm->TDRY + 5., 0);
else

hsm->TmCRY = 60. - hsm->TmCWK;
} /* end if CP > 0 %/

/**************************‘k********************‘k********‘k*‘k****
hkhhhkkhkhkhkdhkhdhhdhidhhsh D8P E R I R R R R R R

***‘k******‘k*************************~k~k***************‘k*********/

TmMWKest = TmMWK 41 ;
if (TmMWKest > 300.0) TmMWKest = 300.0;

if (TmMWKest »>= 300.0) {
hsm->TmCWK = hsm->TmCRY = O;
work rest = 60;
max_work = 300;

} else if (hsm->TmCWK < 5) {
hsm->TmCWK = hsm->TmCRY = 0;
work rest = 0;
if (TmMWKest > 300.0)

max work = 300;
else
max_work = (int) (round (TmMWKest, 0));

} else {

if (hsm->TmCWK >= 300.0) {
hsm->TmCWK = hsm->TmCRY = O;

work rest = 60;
max _work = 300;
} else {
work rest = (int) (round (hsm->TmCWK, 0));

}

if (TmMWKest > 300.)
max _work = 300;
else

max_work (int) (round (TmMWKest, 0));

il

water req = max water = 0.0;
max water = (round (hsm->WtrWK, 1));
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rest_water = (round (hsm->WtrRY, 1));
rest _water sh = (round (hsm->WtxrRYSh, 1));

if (hsm->TmCWK + hsm->TmCRY = Q)
water req = round ((hsm->TmCWK * hsm->WCrWK +
hsm->TmCRY * hsm->WtrRY) / (hsm->TmCWK + hsm->TmCRY), 1);

} /* end of main */

/*******************‘k***************************************************

* Function Name:
* CalcBaseValues

Notes:

Modified 4/13/98 jrf

1) added solider area variable (Asold) and passed to the three
functions requiring it: Hrc, Emax, and WTR.

L

**********‘k"k*****************************‘k**************************‘k**/
void CalcBaseValues (HSMALGO STRUCT *hsm)

{

#define ALPHA 0.95F /* soldier absorptivity */

float idata Pa; /* Ambient air vapor pressure */
float idata HrcWK;
float idata HrcRY;
float idata EregWK;
float idata EreqRY;

float idata EregRYSh; /* NEW wtm Aug 01%/
float idata EmaxWK;

float idata EmaxRY;

float idata temp wk;

float idata temp ry;

float idata metab w;

float Asold, RloadSold,wt, Tmxwork,ereq;

Asold = DUBOIS (hsm in.ht, hsm in.wt);

wt = hsm in.wt;
Tmxwork = hsm_in.Tmxwork;
Rloadsold = Asold/1.8 * Rload; /* Watts, (Rload is

global for 1.8 m2 man) */
/* measurements.Lcor = LEWIS_COR (patm);*/

/*
* Humidity calculations.
* Pa=ambient air vapor pressure in mmHg (torr)
*/
Pa = measurements.relhum*SVP (measurements.dry bulb)/100.;
/*

* Get the metabolic rate in watts for the work period.
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*

*/

/*

(WIM disabled hard categories:resting = 105 very light = 150 light
= 250

moderate = 425 heavy = 600)

metab w = hsm_in.workrate;

* Clothing related calculations.

*/

/*

temp_wk
temp ry

If

Veff (metab w) ;
veff (105.);

il

/* convective and radative exchange for work period. */
/* It(temp wk) is clothing insulation value for work period */
HrcWK = Hrc(It(patm, temp wk), hsm, Asold);

/* convective and radative exchange for recovery period. */
/* It(temp ry) is clothing insulation value for recovery period */
HrcRY = Hrc(It(patm, temp ry), hsm, Asold);

/* maximum evaporative loss for work period. =/
/* Cevap{temp wk) is clothing im/clo value for work period */
EmaxWK = Emax(patm, Cevap (temp wk), Pa, hsm, Asold);

/* maximum evaporative loss for recovery period. */
/* Cevap (temp ry) is clothing im/clo value for recovery period */
EmaxRY = Emax(patm, Cevap(temp ry), Pa, hsm, Asold);

temp_wk = U(temp wk); /* clothing efficiency factor for work
period */
temp ry = U(temp ry); /* clothing efficiency factor for

recovery period */
/* required evaporative loss for work period. */
EregWK = Ereqg{HrcWK, metab w, temp wk, RloadSocld);
/* required evaporative loss for recovery period. */
EregRY = Ereq(HrcRY, 105., temp ry, RloadSold);
/* NEW: required evaporative loss for rcovery in shade */
EregqRYSh = Ereq(HrcRY, 105., temp ry, 35.);
/* NEW: recovery time from max work in the sun */
maxwk rcy = MxWRKRY (wt, Tmxwork, EmaxRY, EreqRY);

/* NEW: recovery time from max work in the shadex/

maxwk_rcy_sh = MxWRKRY (wt,Tmxwork, EmaxRY, EreqRYSh);

hsm->CP = 0.015 * (EmaxRY - EreqRY); /* Cooling power */
hsm->CPSh = 0.015 * (EmaxRY - EreqRYSh); /* Cooling power in
shade */

* Final Rectal and Delta Final Rectal for Acclimatization.

*/

/* Final rectal temperature for work period. */
hsm->TrefWK = Tref (metab w, temp wk, HrcWK, EreqWK, EmaxwWk,
Rloadsold) ;
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/* Final rectal temperature for recovery period. */
hsm->TrefRY = Tref (105., temp_ry, HrcRY, EreqRY, EmaxRY,
RloadSold) ;
/* Final rectal temperature add-on for work period. */
hsm->TrefAWK = DTref (hsm->TrefWK, EmaxWK) ;
/* Final rectal temperature add-on for recovery period. */
hsm->TrefARY = DTref (hsm->TrefRY, EmaxRY) ;

/*

* Water Requirements.

*/
/* water requirements in qgt/hr for work period. =*/
hsm->WtrWK = WTR (EreqWK, EmaxWK, Asold);
/* water requirements in gt/hr for recovery period. */
hsm->WtrRY = WTR (EreqgRY, EmaxRY, Asold);
/* water requirement in quarts for recovery period in the shade */

hsm->WtrRYSh = WTR (EregRYSh,EmaxRY, Asold);
/* compute heat casualty */
heat_cas = heatcas (hsm->TrefWK + hsm->TrefAWK) ;

} /* end of calc _base values */

/*****k******************************************************************

* dok kK

* Function Name:

* ComputeAspiratedWetBulb

*

* Description: Computes wet bulb from dry bulb and RH.

*

* Notes:

* 1) the factor 2.0 is the Lewis number. It has units of degrees C /
mm Hg

* 2) Lewis number correction for atmospheric pressure Lcor= Patm™ (-.45)

khkhkhkhdhkhkhkhkrhkhkhkhkhkhhhhhkhrdhdkhdhhh bk hhkhkddkhhk ok hkhkdhFhkrrh kA rdhdkhkrdk bk dkhhkhkhhkdktx

****/

void ComputeAspiratedWetBulb (float *Twb)
{

float idata k1;

float idata k2;

float idata delta;

float idata awet bulb;

k1l = measurements.Lcor * 2.0 * (SVP (measurements.dry bulb) *
measurements.relhum / 100.0) + measurements.dry bulb;
k2 = 0.0;

delta = 10.0;
awet bulb = 0.;

while (1) {
while (k1 - k2 »>= 0.) {
k2 = measurements.Lcor * 2.0 * SVP (awet bulb) + awet bulb;

awet_bulb += delta;
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if (awet bulb > 100.0) break;
}
awet_bulb -= measurements.Lcor * 2.0 * delta;
delta /= 10.0;
if (delta < 0.0001) break;
awet_bulb -= delta;
k2 = 0.0;
}

measurements.awet_bulb = awet bulb;

void ComputeDewPoint ()
/***************‘k********‘k******************‘k*‘k‘k*********************

computes the dewpoint from the dry bulb temperature and relative
humidity

************‘k*****************************k*********************‘k*******/

{

float Pdp, logPdp;

Pdp = 0.01 * measurements.relhum * SVP(measurements.dry bulb);

/* mm Hg */

logbPdp = (float)logl0 (Pdp);

measurements.dewpoint = (155.0F - 235.0F * logPkdp) / (logPdp -
8.1076F) ;

}

int ComputeNaturalWetBulb ()

/‘k*‘k****************************‘k***********************k****************

computes the natural wet bulb temperature using the model of Gonzalez
et al.

Computes by solving the heat balance
f = Qin(Twb) - Qout (Twb) = 0

using the secant iterative method

x n+l = x n - £(x_n) / m
m= {(f(xn) - £{xn-1)) / (xn - x n-1).
where,
Qin(Twb) = Qconv + Qrad
Qout (Twb) = Qevap

****k‘k***k‘k*****‘k********‘k*******************************‘k****‘k******‘k***/

{

#define MAXITER2 10
int ict;

float Ta, Trk, dp, hconv, hevap, Trk4, PdAp;
float xnew, xo0ld, fnew, fold, m, reldif, scale;
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Ta = measurements.dry bulb;
Trk = measurements.mrt + 273.16F;
dp = measurements.dewpoint;

hconv = 42.024F * pow((patm*measurements.wind speed), 0.466);
hevap = measurements.Lcor * 2.2F * hconv;

Trk4 = Trk * Trk * Trk * Trk;

Pdp = SVP( dp ); /* mm Hg */

/***********************************************************************

Let our first guess for wet bulb be equal to the dewpoint.
For semantic purposes we name xnew first and xold
second to land the first iteration on (xo0ld, fold).

***********************************************************************/
Xnew = dp;
fnew f wetbulb (hconv, hevap, Ta, Trk4, Pdp, xnew);
xold = xnew * 1.001;
fold = £ wetbulb(hconv, hevap, Ta, Trk4, Pdp, xold);
m = {(fold - fnew) / (xo0ld - xnew);

il

/* need to define "zerom" */
scale = fabs((xnew + 273.16F) * 1.e-6);

ict = 0;

lin 10:
if (ict > MAXITER2)
return( FAILURE ) ;

xnew = xold - fold / m;
reldif = fabs(xnew - xold);
if (reldif > scale) /|
fnew = £ wetbulb (hconv, hevap, Ta, Trk4, Pdp, xnew);

m = (fnew - fold) / (xnew - xold);
fold = fnew;

xold = xnew;

ict = ict + 1;

goto lin 10;

}

measurements.wet bulb = xnew;
return( SUCCESS ) ;

}

/****************************************k***************************

f_wetbulb

*********************************k************************k********/

float f wetbulb(float hconv, float hevap, float Ta, float Trk4,
float Pdp, flcoat Twb)

/***********************************************************************
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the heat balance equation used to compute the natural wet bulb
temperature

WTM changes absorbtivity/emissicvity of wick from 1 to 0.4* STEFAN B

**********‘k*************‘k********************************************k**/

{

float Twbk, Twbk4, Pwb, Qconv, Qevap;

Twbk = Twb + 273.16F;

Twbk4 = Twbk * Twbk * Twbk * Twbk;

Pwb = SVP{ Twb );

Qconv = hconv * (Ta - Twb) + 0.4*STEFAN BOLTZMANN * (Trk4 -
Twbk4) ;

Qevap = hevap * (Pwb - Pdp);

return (Qconv - Qevap) ;

/*k****'k“k*k*****k*‘k***k‘k‘k*****k‘k*k'k*************‘k*k*‘k*‘k‘k‘k‘k*********************
Function Name:
ComputeGlobe

Computes the globe temperature for a 6 inch globe given a mean
radiant temperature and the properties of the air.

Also computes Rload (a global variable), the radiant load [W/m2]
on the solider, and the wbgt index.

Outputs: SUCCESS, if successful
FATLURE, if not

L S T T A S S R T

***************************‘k************‘k*******’k‘k‘k*******************/

int ComputeGlobe (void)

{

float 4; /* diameter of
globe */

float v; /* velocity of air
*/

float xdata Tr; /* mean radiant
temperature */

float xdata Tgt; /* globe temperature */
float xdata Ta; /* ambilent
temperature */

float xdata Hcg; /* convective heat
exchange coef */

float xdata Hrg; /* radiative heat

exchange coef */
float Ta2, Tr2;

Ta = measurements.dry bulb + 273.16;

Ta2 = Ta * Ta;
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Tr = measurements.mrt + 273.16;
Tr2 = Tr * Tr;
d = 0.1524; /* meters, for 6" globe */
v = measurements.wind speed; /* m/s */
Hrg = 0.95 * STEFAN BOLTZMANN * (Tr + Ta) * (Tr2 + Ta2);
Heg = 6.32 * pow (d, -0.4) * pow ((patm * v), 0.5); /*
patm is bar pres correction */

Tgt = (Hcg * Ta + Hrg * Tr)/(Hcg + Hrg);

measurements.globe = Tgt;
measurements.globe -= 273.16;

/*
* Determine the radiant load [W] using USARIEM Technical Report
No.T01/13

*/
Rload = -0.071 * pow ((Tr - Ta), 2) + 10.432 * (Tr - Ta); /* W */
/*
* Determine the WBGT.
*/
measurements.wbgt = 0.7 * measurements.wet bulb + /* outdoor expr */

0.2 * measurements.globe +
0.1 * measurements.dry bulb;

return( SUCCESS ) ;

/********************‘k*************************************‘k‘k***********
* Kk kK *k

* Function Name:

* SVP

*

L R R R R R R R R R R R Y
****/

float SVP (float T)

{

return (pow (10., {(8.1076-(1750.286/(T+235.)))));

} /* end of SVP routine */

/**************‘k*****‘k*************k***k***'k‘k"k‘k*k*k'k*****k*******************
EE O

* Function Name:
* Veff

*
R R o R R R e R R R R R R R R R R R NI I T

****/

float Veff (float M)
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return ({measurements.wind speed)+0.004* (M-105.));

} /* end of Veff routine */

/****‘k‘k********‘k********************************‘k***************'k*******

* Function Name:
* It

*

~k***‘k******************‘k**‘k****‘k*‘k******‘k***'k'k*k**************‘k*********/
float It (float patm, float V)

{

float Itc;
float Itvce;
clothing table *cl table;

/*
* Set default clothing coefficients.
*/
cl table =
clothing_list[input selections.clothing type_ idx].clo lst;

/* clothing coefficient */
Itc = c¢l_tablelinput selections.clothing idx].itc;

/* clothing velocity coefficient */
Itve = cl_table[input_selections.clothing_ idx].itvc;

return (Itc * pow((patm * V), Itvc));

} /* end of It routine */

/**‘k***‘k***************************-k***-k*******‘k*k‘k’k*k‘k"k******************

* Function Name:

* Cevap
*

************************************************‘k***‘k******************/

float Cevap (float V)

{

float Imc;
float Imvc;
clothing table *cl table;

/*
* Set default clothing coefficients.
*/
cl _table =
clothing list[input_selections.clothing type idx].clo lst;

/* clothing permeability coefficient */
Imc = c¢l_tablelinput selections.clothing idx].imc;

/* clothing permeability velocity coefficient */
Imve = c¢l_table[input selections.clothing idx].imvc;
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return (Imc*pow(V, Imve));

} /* end of Cevap routine */

/***************************************************************‘k*******

* Function Name:
* U

*

*‘k*k***k'k‘k**‘k***********‘k****‘k‘k‘k*************‘k****‘k**********************/
float U (float V)

{

float Itc;
float Itvc;
clothing table *cl table;

/*
* Set default clothing coefficients.
*/
cl _table =
clothing list [input_selections.clothing type idx].clo lst;

/* clothing coefficient */
Itc = c¢l_tablelinput_selections.clothing idx].itc;

/* clothing velocity coefficient */
Itve = cl_tablelinput selections.clothing idx].itvc;

return ((0.41/Itc)*pow(V, (-(0.43+Itvc))));
} /* end of U routine */

/"k****k‘k'k*******************************************‘k**‘k*‘k***************

* Function Name:

* Hrc

*

* Notes:

* Modified 4/13/98 irf

* 1) the original constant "11.772" has been replaced by the product
* 6.45 * A

* where

* A is the DuBois surface area

*

This is consistent with the Ada implementation of HSDAN.

*****k‘k***‘k***‘k‘k*********‘k*****************k*k*‘k**‘k**‘k‘k*k******************/
float Hrc (float It, HSMALGO_STRUCT *hsm, float 3)

{

return (6.45F * A *(measurements.dry bulb - hsm->Tskin)/It);

} /* end of Hrc routine */
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/***‘k*************************************-k************************k*‘k**‘k

* Function Name:

* Ereq
*

'k*k‘k'k**‘k‘k***‘k*'k****k*k'k***************************************************/
float Ereq (float Hrc, float M, float U, float RloadSold)

{
return (Hrc + M + U * RloadSold);
} /* end of Ereqg routine */

/***k*********************************************‘k‘k‘k‘k*******************

* Punction Name:

* Emax

*

* Notes:

* Modified 4/13/98 jrf

* 1) the original constant "25.935" has been replaced by the product
* 14.21 * A

* where

* A is the DuBois surface area

* This is consistent with the Ada implementation of HSDAN.

* 2) the constant 45.8 has been replaced by the function SVP, given the
*

skin temperature.
* 3) Emax factor for high terrestrial altitude, patm *-0.45 wtm Nov
2001

***********************************************‘k‘k*****‘k****************/

float Emax (float patm, float Cevap, float Pa, HSMALGO STRUCT *hsm,
float A)

{

float result;

result = (pow(patm, -0.45) * 14.21F * A * Cevap * (SVP {(hsm->Tskin)
- Pa));

/* result = (14.21F * A * Cevap * (SVP (hsm->Tskin) - Pa));*/
return( result );

/* 4/13/98 jrf return (25.935 * Cevap * (45.8 -~ Pa)); */
/* 3/19/97 KSH return (25.935 * Cevap * (SVP (hsm->Tskin) - Pa)); */

} /* end of Emax routine */

/*********~k****************************************‘k*****‘k**‘k*********k*

* Function Name:

* Tref
*

*"k‘k***‘k***~k**************************~k~k~k*****k*'k*************k***‘k*‘k*‘k***/

float Tref (float M, float U, float Hrc, float Ereq, float Emax,
float RloadSold)
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return (36.75 + 0.004*M + 0.0025* U * RloadSold + 0.0011*Hrc +
0.8*exp(0.0047* (Ereq - Emax)));

} /* end of Tref routine */

/*************'k~k**’k‘k******‘k‘k‘k**********‘k***********'k****k****************

L T T R T T S

Function Name:

DTref

Notes:

Medified 4/13/98 by jrf

1)

2)
3)
4)

added logic for Kdehyd
acclimation assigned directly to days in heat (DIH)
broke big eq into smaller, more readable pieces
removed
if (DTref tmpry < 0.0001F)

DTref tmpry = 0.0F;
logic

********k'k****************k***************k"k*****************************/

float DTref (float Tref, float Emax)

{

float DTref tmpry;
float DIH;
float Kdehyd, alp;

/*

/* days in heat */

DIH = hsm in.acclim;

/* dehydration factor */
if (hsm in.dehyd >= 5.0F)

Kdehyd = 1.0F;
else

Kdehyd = 0.2F * hsm_in.dehyd;
alp = -0.3F * DIH * (1 - Kdehyd);

DTref tmpry = 0.0;
if (Emax > 0.) {

DTref tmpry = (0.5F +

1.2F *
(1.0F - exp(0.5*(37.15 - Tref))) =*
(1.0F - exp(-0.005*Emax)) );
DTref tmpry *= (float)exp(alp);
DTref tmpry += 0.1735F * hsm in.dehyd - 0.215F;

if (DTref tmpry < 0.0001F)
DTref tmpry = 0.0F; */

}

return (DTref twmpry);

} /* end of DTref routine #/



/**************************************k**‘k******************‘k**"k*******

* Function Name:

* WTR

*

* Notes:

* Modified 4/13/98 jrf

* 1) the original constant "50.921" has been replaced by the product
*

27.9 * A

*

Modified March 2001 wtm

1) original Shapiro Ereg and Emax are per unit BSA!
where
A is the DuBois surface area
This is consistent with the Ada implementation of HSDAN.

* % % %

********‘k*********‘k***‘k‘k‘k****‘k*************'k*****‘k*‘k*‘k***************‘k*/
float WTR (float Ereq, float Emax, float A)

float sweat;

/* new variables, body surface area-normalized values of Ereq and
Emaxfor Shapiro Eg. wtm */

float Ereqgs;

float Emaxs;
Eregs=Ereq/A;
Emaxs = Emax/A;

if (Emaxs <= 0.0)

sweat = 2000.;
else
sweat = 27.9F * A * Eregs * pow(Emaxs, -0.455);
/*
* Limit sweat to the range 150 - 2000.
*/
sweat = max ((min (sweat, 2000.)), 150.);
/*
* Return the water requirements.
*/
return (sweat * .0010567) ; /* liters -> canteens (i.e. gts) */

} /* end of WIR routine */

/******‘k**‘k‘k***‘k*****k*“k*********‘k*******‘k************************\k‘k**’k**

* Function Name:

* MxWK
*

"k**k**k****'k**************************~k********************‘k‘k‘k***********/

float MxWK (float TL, float DTreWK, float TreoCWK, float TDWK, float
KWK)
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{

float temp;

if (DTreWK > 0.) {
temp = (DTreWK + TreoCWK - TL) / DTreWK;
if (temp > 0.)
temp = log (temp);

else
temp = -227.9; /* same as log (1e-99) */
} else {
temp = -227.9; /* same as log (le-99) */

}

return (TDWK - temp/KWK) ;

} /* end of MxWK routine */

/*'k********‘k*‘k***************************~k‘k‘k***‘k**‘k‘k‘k*k*k*k*k**k“k\k‘k‘k***‘k*****

* Function Name:

* round
*

***********‘k*****************************‘k*‘k**‘k***‘k‘k*‘k***k****k*k**'k‘k‘k*"k**/

float round (float x, unsigned char digit)

{
X *= pow (10.0, (float)digit);
X = (float) ((int) (x + 0.5));
x /= pow (10.0, (float)digit);

return (x);

} /* end of round routine */

/*********‘k"k*k*************************k**‘k***********************‘k*******

* Function Name:
* TreWK

*

‘k‘k******k**~k*~k*****‘k*‘k**************************************************/

float TreWK (float t, float TreoCWK, float DTreWK, float KWK, float
TDWK)

{
return (TreoCWK + DTreWK * (1.0 - exp (-KWK * (t - TDWK))));
} /* end of TreWK routine */

/***'k‘k***‘k****~k*******‘k"k‘k***************‘k‘k******************k***********

* Function Name:
* TreRY

*

**‘k****‘k***'k********************************‘k*‘k************************/
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float TreRY (float t, float TreoCRY, float DTreRY, float KRY, float
TDRY)

{

return (TreoCRY + DTreRY * (1.0 - exp (~KRY * (t - TDRY))));

} /* end of TreRY routine * /

/******‘k********k***************************‘k****************************

* Function Name:

* MXWKRY

*

* note:This is Lee's StrTm,cooling based on heat content,
* 0.965 is 0.83 body sp heat / 0.8606 Kcal/hr/Watt

*

wtm Aug 2001

*

*‘k**k*k*k‘k**‘k**"k**‘k**k*k****'k**‘k"k‘k*‘k***************************************/

float MxWRKRY (float wt, float Tmxwork, float EmaxRY, float ereq)

{

float temp;
temp = (0.95 * wt * (Tmxwork - 37.0)/(EmaxRY - ereq))*60;
if (temp < 0 ) temp = 0;

return (round(temp, 1));

} /* end of MxWRKRY

/********~k~k*********'k**‘k**‘k*********************‘k‘k*k*********************

* Function Name:

* GetSkinTemp

*

* note: dead code

* Hold Tskin to 36.5

*‘k"k*******************‘k********************‘k*k‘k******‘k******************/

void GetSkinTemp (HSMALGO_STRUCT *hsm)

{

#if 0
float TO;
float Hc;
Hc = 8.6 * pow (measurements.wind speed, 0.5);
TO = (4.7 * MRT + Hc * measurements.dry bulb) / (4.7 + Hc);

hsm->Tskin = 25.8 + 0.267 * TO;
/*
* Constrain to 34 - 37.
*/

hsm->Tskin = min (37.0, max (34.0, hsm->Tskin)) ;
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#else

hsm->Tskin = 36.5;
#endif

} /* end of GetSkinTemp

routine */
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